Optimization of Graphene Oxide/Polyethylene Glycol Nanocomposites as Antibacterial Coatings in the Food Packaging Industry

by Wipsar Sunu Brams Dwandaru, Fika Fauzi, Suparno

ABSTRACT

The objectives in this Colloids and Nanomaterials Research Group (RG) researach were i) to synthesize graphene oxide (GO) materials, ii) to characerize GO to sythesize *polyethylene glycol*/GO (PEG/GO) by varying the composition of GO and PEG, and iv) to determine the anti-bacterial properties of the reslting nanocomposites againts *S. aureus* and *E. coli* bacteria. In general, the method in this research began with the manufacture of GO nanomaterials using the microwave modified Hummers method. Furthermore, various characterizations of GO nanomaterials were carried out using UV-Vis spectrophotometer, FTIR spectrometer, SEM, and anti-bacerial tests. Then, PEG/GO nanocomposites were synthesized with various composition of the GO. Furthermore, the nanoncomposite anti-bacterial test was carried out against *S. aureus* and *E. coli* bacteria. The results of the UV-Vis characterization of GO produced an absoption peak at a wavelength of 257 nm and variations of GO on the PEG/GO composite (GO 5 mg, 50 mg, 100 mg, and 300 mg), respectively, produced absoption peaks at wavelegths of 279 nm, 278 nm, 278 nm, and 273 nm. The results of the anti-bacterial test showed that the diameter of the inhibition zone that had the best anti-bacterial effect after an incubation period of 24 hours against *E. coli* and *S. aureus* occured in the PEG/GO (5 mg) variation with 11 mm and 13 mm inhibition zones. Based on the provisions of an anti-bacterial agent, the PEG/GO (5 mg) variation was included in the criteria for strong inhibition with a diameter of 10 mm - 20 mm.

Kata Kunci: graphene oxide, polyethylene glycol, anti-bacterial coatings